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A statistical model for excitation energy distributions in 
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CISE, Segrate (Milano) and Istituto di Fisica dell’Universita, Milano, Italy 

Received 19 November 1973 

Abstract. The last stage of the fission process has been studied on the basis of a statistical 
model. Two fundamental hypotheses are made: (i) the internal degrees corresponding to the 
fragment nuclear structure are in conditions of statistical equilibrium and (ii) the freedom 
degrees related to the fragment motion at the scission point are not in statistical equilibrium 
with the internal degrees. The proposed statistical model reproduces the general properties 
of the excitation energies of the fission fragments in actinide fission. 

1. Introduction 

In recent years many aspects of the fission mechanism of heavy nuclei have begun to be 
understood ; in particular, the properties of deformation energies, such as the basic dis- 
covery of the second minimum in the deformation energies, the properties of fission 
isomers, the asymmetric shapes of the nucleus at the second saddle and the description 
of fission widths and their behaviour (Brack et a/ 1972, Moeller and Nilsson 1970, 
Bolsterli et al 1972, Pauli et al1971), have all been thoroughly investigated and clarified. 

The last stage of the process, that is, the transition ofthe system from the saddle to the 
scission point, has not, however, been made clear up to now. The purpose of the present 
paper is to discuss this stage and in particular the energy properties of fission fragments. 

In a recent paper Swiatecki and Bjmnholm (1972) present the stage currently reached 
by research on the nuclear system in the last fission path. Two extreme hypotheses have 
been considered in the meantime. 

(i) A dynamical treatment of the scission process, when the nucleus is considered as a 
non-viscous irrotational fluid, has been studied by Nix (1968). His model gives correct 
results for fragment mass and energy spectra in the case of high-energy fission of light 
nuclei like bismuth but does not seem satisfactory for low-energy fission of actinides. 

The most interesting result obtained in this analysis shows how the two fragments 
display a large amount of kinetic energy ( 2 M O  MeV) at scission. This prediction agrees 
with the results obtained from the detailed analysis of ternary fission by various authors, 
such as Halpern (1963) and Feather (1969). 

(ii) Starting from the opposite point of view, Fong (1953, 1956) assumed that the last 
stage of the deformation process occurs with strong viscosity so that the fragment 
kinetic energy at scission point is practically negligible. He then assumed that the 
probability of formation for a given pair of fragments is proportional to the density 
levels of the fragments at the scission point. With this model Fong reproduced the shape 
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of the mass distribution in 235U fission induced by thermal neutrons ; this was done with 
the rather arbitrary use of numerous parameters?. 

The analysis given below is based on a hypothesis that lies halfway between Fong's 
model of strong viscosity and Nix's approach, where viscosity is not taken into account. 

We assume in fact that during the deformation motion from saddle to scission, a 
part of the available energy is converted into the internal excitation energy of the 
fragment and a part of it turns into the kinetic energy of the fragments. 

The aim of this analysis is to show how a simple statistical description of the energy 
properties of the fission fragments can be given. 

In 5 2 the basic statistical hypotheses and formulae are discussed. In 4 3 a com- 
parison is made between the analysis predictions and the experimental results in 252Cf 
spontaneous fission (on which most experimental data are available), in 235U fission 
induced by thermal neutrons and in 233U fission at intermediate energies. 

2. Basic hypotheses and formulae 

2.1. The energy at scission point 

The energy balance of the nucleon system at scission point is achieved by considering the 
two nascent fragments A , ,  Z,  and A , ,  2, ( A , ,  A ,  being the mass numbers and Z ,  , Z ,  
the proton numbers of the two fragments) with a given distance rs between their centres 
and with a total kinetic energy gC. 

We have no direct information about the shape of the fragments at scission. We 
assume as a first approximation, that the fragments already have their final shape at 
scission. Therefore we do not consider the deformation energies of the fragments at the 
scission point as playing an important role. In 9 4 we make a few remarks on this point. 

(1) 

where m ,  is the rest mass of the nucleus in the ground state and U ,  its initial excitation 
energy. The energy conservation at scission is written 

( 2 )  

where mlc2 and m2cz indicate the ground state energies of the two fragments ( A , ,  Z , ) ,  
( A , ,  Z,) respectively, U ,  and U ,  indicate the single fragment excitation energies at both 
the scission point as well as later on before neutron emission. V ( r s )  is the coulombic 
repulsive potential at radius r s .  

As previously mentioned, the energy available at the scission point is divided between 
the internal excitation energy U = U , + U 2  and the collective kinetic energy 4 of 
the fragments. 

The total initial energy of the fissile nucleus is 

Eo = moc2 + U ,  

E ,  = m , cz  + m2c2 + U , + U ,  + gC + V (  r , )  

The final total kinetic energy & of the fragment is given by 

4 = W,)+6",, (3) 

t A different statistical model was developed by Newton (1956) and by Ericson (1960). Ericson's formulation 
takes into account the principle of detailed balance between fission and the inverse fusion process. Starting 
from this model Erba et al(l966) made an attempt to explain the properties of the fission fragments. It was 
shown recently by Swiatecki and Bjernholm (1972) that fusion and scission cannot be considered the reverse of 
each other. 
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we then have the relation 

Gk+ U = Q, (4) 

where Q, indicates the total fission energy. 
The scission point is not sharply defined, being instead somewhat spread over the 

scission region. In this case the scission radius r ,  must be considered an average value. 
We can deduce an upper limit for V(r,). The maximum value of U is in fact limited 

by the energy Q,- V(r,) available at the scission point; V(r,) < Q,- U,,,; taking into 
account the values of Q, and U,,,, for instance in low energy fissions, V(r,) is found to be 
smaller than 140 MeV and the corresponding value of rs is higher than 18-20 fm. 

2.2. Statistical independence of U , and U ,  

A fundamental property of excitation energies, U ,  and U , ,  of the fragments has been 
recently observed by Signarbieux et al (1972). Denoting v 1  and v, as the number of 
neutrons emitted by fragments A , , Z ,  and A , ,  Z ,  , respectively, these authors found ex- 
perimentally that the variance of the sum v ,  + v, is approximately equal to the sum of the 
separate experimental variances of ill and v,. Since the emitted neutron numbers are 
linearly dependent on the excitation energies, this means, by taking into account the 
well known propertes of variances, that 

where 8, and 8, indicate the average values of fragment excitation energies and 
p ( U ,  U,) dU, dU, is the probability of finding fragment A , ,  Z ,  with excitation energy 
between U ,  and U , + d U ,  and fragment A , , Z 2  with excitation energy between U ,  
and U2+dU,.  

As a consequence of equation (9, the function p ( U ,  , U , )  turns out to be the product 
of two functions, one of U ,  and one of U,.  

2.3. Scission states 

Each particular quantum state of the nucleus at scission point is characterized first by 
the way the nucleons split into two fragments A , , Z and A , ,  Z ,  and then by the particu- 
lar configuration the nucleons assume in each fragment. We indicate the internal 
states of fragments A , , Z ,  and A, ,Z , ,  respectively, by the symbols s la , sZb  where 
a = 1,2,3, .  . .; b = 1,2 ,3 , .  . . . The combined states of the system formed by fragments 
A , ,  Z , ,  A , ,  Z ,  in states s la  and S 2 b  respectively, are indicated in the following simply 
by s(y).  For our purpose i t  is important to point out that the system can assume an 
extremely large number of configurations; the number of fragment pairs is of the order 
of a few hundred and at excitation energies of 10-30 MeV the number of excited levels of 
fragments ranges more or less from e20-e40. 

Each system state corresponds to a given value of the collective kinetic energy 6. The 
internal or structural energy E ( y )  of the scission system in s (y )  state is given by 

E ( y )  = m,c2+m,c2+T/(rs)+Ul,+ U,, (6) 

where U , ,  and U,, are the excitation energies of fragments A , ,  Z ,  and A , ,  Z ,  when they 
are excited in s lo  and s,,, states, respectively. 
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Our statistical description of the scission process is based on two fundamental 
hypotheses. 

(i) The internal freedom degrees corresponding to the fragment nuclear structure 
and characterized by the quantities A ,, Z ,  ; A 2 ,  Z 2  ; slo, in a condition of statistical 
equilibrium. 

(ii) The freedom degrees related to the fragment motion at scission point are not in 
statistical equilibrium with the internal degrees. This hypothesis is suggested by the 
fact that the fragment kinetic energy ~3~ represents a collective motion of the nucleons 
which we consider not strongly coupled with the internal freedom degrees. 

With a fixed r ,  value, for each fragment pair we have 

0 Q 6", Q Q,-  V(r,)  

E,-(Qt-V(rs)) Q E(Y) Q EO. (8) 

A , + A 2  = A ,  (9) 

Zl+Z2 = z ,  (10) 

(7) 

and the corresponding condition for E ( y )  

We also have the conservation relations 

A o ,  Z ,  being the mass number and the proton number of the fissioning nucleus. 

2.4. Probability of formation of fragment states 

We denote by p(y) the probability of finding the nucleon system at scission point in a 
given s(y) state. We assume that the p(y) probabilities are statistically distributed over all 
the available states of the fragment system. 

In order to apply statistical considerations to a fissile nucleus A,, Zo  at scission, let 
us now consider an ensemble consisting of a very large number n of distinguishable 
systems, each one a replica of the system of interest. 

As is usual in statistical mechanics (see for example Davidson 1962), we assume that 
the average properties of the fissile nucleus (A,,, Z,) at the scission point can be obtained 
by ensemble averaging of the properties of the system. 

We remark, incidentally, that this condition is equivalent to the hypothesis of statisti- 
cal equilibrium among the scission fragment states?. 

We can now consider the ensemble of n systems in a particular ensemble state, which 
can be described as follows : n ,  systems of the ensemble are in state s( l), n2 in state s(2), 
n3 in state 4 3 )  and so on. There are a number of individual distinguishable ensemble 
states, which correspond to the distribution D ( n r  , n 2 ,  n3 ,  . . .). The general hypothesis is 
made that any 'ensemble state' is a priori equiprobable. t ,  is the symbol we use for this 
number of individual distinguishable ensemble states for this particular D distribution. 
We have 

n !  
t ,  = ___ 

n,n,!' 

The possible distributions D are limited by the two conditions 

C n , = n  
Y 

t This overcomes the difficulties presented by the fact that scission is a rapid irreversible process. 
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which corresponds to the conservation of the total number of ensemble systems and by 

Y 

E being the average internal energy per system. The average entropy of a nucleon system 
in the ensemble is defined by 

S = In t,,,/n (14) 

ttol being the total number of states in which the ensemble occurs: 

tto: = t D  
D 

the sum being extended to all distributions which satisfy the relations (12) and (13). 
Considering equations (1 l), (1 5) and their related conditions, we reach the conclusion 

that the statistical properties of the fragment system at scission point can be described 
by the well known canonical description of particle systems in thermal equilibrium 
(see, for instance, Jackson 1968 and Davidson 1962). 

According to the usual procedure the properties of the system of interest are, to a 
high degree of approximation, the properties of the most probable distribution. Nearly 
all the ensemble states correspond in fact to the most probable distribution, which 
maximizes t D  subject to the conditions (12) and (13). Applying the standard procedure 
for optimizing t D  from equation (11) with conditions (12) and (13), one obtains the 
probability p(y) = nyjn of finding the system of interest in the yth state 

(16) p ( y )  = 2; 1 e-BoE(y)  

ZZf is the canonical partition function of the system and is given by 

Y 

where the sum includes all system states which satisfy the relations (8t( 10). The constant 
Po value is usually represented as the inverse ofthe statistical to  temperature ofthe system 

PO' = t o .  (18) 

The constant Po value is related to the average value E of the internal or structural energy 
of the system by the well known relation 

It should be pointed out that the model does not predict the value of E but gives the 
probability distribution law around the average value. We can finally give the expression 
for the entropy 

which refers to the canonical systems. 
We shall not attempt to prove the validity of the assumptions made, for instance by a 

general discussion of the viscous motion of the system ; our purpose is to give a statistical 
interpretation of fragment properties. 

In particular, in this paper we are interested in the energy properties of fragment 
pairs, so we apply equation (16) to examine the distributions of excitation energy for 
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any given fragment pair. Then considering mass and potential energies constant, 
equation ( 1  6) for each given fragment pair becomes 

where p(sla, S2b) indicates the probability of finding the ( A , ,  Z, ) ,  ( A 2 ,  Z , )  system with a 
fragment (A,, Z , )  in state s la  and a fragment A , ,  Z 2  in state sZb. 
S,, is the sum 

S12 = x exp(- B O  - B O U 2 b ) .  (22) 
ab 

This sum includes all the available internal states of fragments A , ,  Z ,  and A,.  Z,.  

split up the sum, obtaining 
Due to the fact that states s l a  are statistically independent of states S2b, it is possible to 

2.5. Excitation energy distributions 

Regrouping the internal states corresponding to given values of excitation energies 
U ,  and U 2  and considering the U’s  as continuum variables we have from equation (21) 

(24) 

p l (  U , )  and p 2 ( U , )  indicate the nuclear level densities of A , . 2 ,  and A , ,  Z, ,  respectively. 
Function 9, , has to be expressed with appropriate integral forms. 

It is interesting to note that equation (24) agrees with the independence rule (5) ob- 
tained from the experimental results. 

The excitation energies U ,  and U ,  fluctuate around given average values. 
From formula (24) we get the energy distributions of U ,  and U ,  separately 

p(U,U,)dU, dU, = ~ ~ ~ e ~ P o u ~ p I ( U 1 ) e ~ P o u z p , ( C r 2 ) d U I  dU,. 

p( U , )  d U ,  e-aouip( U , )  d U i  (i = 1, 2). (25) 

For level density we introduce the expression given considering the nucleons in the 
nucleus as arranged in equi-spaced or nearly equi-spaced single-particle states (Ericson 
1960). We have 

g, = (6/n2)ai, g, being the average density of nucleons at the Fermi top, and U :  = U i  
- Ai ,  where Ai is the pairing energy. We take Ai = 1 1.5/A!l2 MeV (Wing and Varley 
1964). 

The nuclear temperature is given by 

Where T / U  is small, equation (26) leads to the following approximate relation between 
excitation energy and temperature : 

U ;  N aiT’-2.5T. (28) 
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Equation (26) has been compared with experimental data on level densities by numerous 
authors and a values are given for a large number of nuclei (Erba et al 1961, Facchini 
and Saetta-Menichella 1968). These values show a regular rise with A values, while 
deep minima are found for magic and double-magic nuclei. The a values of fission frag- 
ments for actinides were obtained by Lang (1964) and Bishop et al (1970) at different 
excitation energies through analysis of the cascade of neutrons evaporated from excited 
fragments. 

It is interesting to note that the a values obtained by Lang (1964) at low excitation 
energies show a deep minimum in the region of the double-magic nucleus A ,  = 132, 
(N, = 82, Z ,  = 50). The minimum is less pronounced at higher excitation energies 
(Bishop et a1 1970). This becomes clearer if it is recalled that many experimental results 
and theoretical analyses have shown the ‘anomalous behaviour’ of p( U )  in the nuclei 
before and after the magic nuclei, for instance in the case of lead (Z  = 82, N = 126) and 
of tin ( Z  = 50). In the region of magic nuclei the level density expression is not given 
by equation (26) but In p ( U )  shows approximately a linear rise against U for U values 
which are not high (Marujama 1969, Ignatiuk et al 1970, Williams et al 1972). 

It is, therefore, also possible to  assume similar behaviour for fission fragments 
A = 132 with Z close to 50 and with N around 82. 

We have the peak values U* and T* at the peak of energy distribution (25) when 

Equations (29) and (27) give equal nuclear temperatures for the two complementary 
fragments as the most probable: 

T:  = TT. (30) 
These are equal to each other as well as to the statistical temperature to : T: = TT = to .  

If distribution (25) is taken into account, it can be easily shown that the average values 
U , ,  8, and T, ,  T2 are approximately equal to the most probable one, so that we have 

(31) 
The canonical ensemble formalism (Jackson 1968, Davidson 1962) gives the following 
simple expression of variance 

- 

- -  
T, 2: T2 2 t o .  

( i  = 1,2). 
d Di 

Uf - to--- 
d to  

- 2 

When considering the equi-spaced single-particle model (Lang 1954, Ericson 1960) we 
have : 

0; = a&. (33) 

From relation (32) we have then : 

051, = 2a& (i = 1, 2) 
and then 

a:, = 28:t,, (i = 1, 2). (34) 

If the nuclear level density logarithm follows an approximate linear law, as in the magic 
fragment region, we should expect a larger value of d U,dto and a corresponding increase 
of a2. 
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It is interesting to consider the fractional fluctuation in energy (ie the au/D ratio). 
To this aim we introduce f i ,  which represents the average number of excited degrees of 
freedom, that is, excited nucleons and their corresponding holes involved in the building 
up of the excitation average energy D. The ii expression is given by Ericson (1960) as 
follows 

ii = 2gto In 2. (35) 

Using the expressions U' = at: and r ~ g  = 2D't0 leads to 

2 12 -- (%) = at, - nzgt ,  

and hence from (35) 

Taking into account the values of g and the experimental values of to  (see 93), the values 
of ii turn out to be of the order of 10-20 and the ratio ou/D' is of the order of 0.3. The 
excitation energies will show a marked fluctuation due to the low values of ii. 

2.6. Total excitation and kinetic energy distribution 

It is interesting to analyse the distribution of the total excitation energies U = U ,  + U ,  
for the various fragment pairs. 

The value of U is directly related to total kinetic energy 8 k  as shown in equation (4), 
so that the distribution of U corresponds to the distribution of &k, which is known from 
experiments. The distribution of U is obtained from equation (24) by substituting for 
the variable U ,  and integrating over U : 

p(U)dU = ~ o u p ( U - U l , U l ) d U l d U  

and successively from equation (24) 

p(U)dU = 9;; e-p0u p l (Ul)pz(U-Ul)dUl  dU. Jo" 

(37) 

The indicated integral J: p1p2  dUl  was studied by Fong (1956) and is approximately 
given by 

C' exp[2J-] (39) 

where C' is nearly constant, and U' = U - (Al  + Az). Finally we obtain 

The distribution turns out to have average values of U and U' given by 

B N B 1 + B 2 ;  U' = B - ( A l + A z )  (41 1 
while the variance is given by 
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If the system of the two fragments is considered at a given value of total kinetic 
energy &&, that is, at a fixed value of total excitation energy U ,  the division of excitation 
energy between the two fragments turns out to be determined by the product p1p2 : 

This distribution has a maximum value for 

ie, 

TT(&L) = T f ( $ )  (44) 
as TY(6,) and T:($) are the most probable nuclear temperatures of each fragment 
A , ,  Z ,  and A , ,  Z ,  for any given value of total kinetic energy $. From the equality of 
the most probable temperatures, we also have approximate equality of their average 
values. 

3. Comparison with experimental results 

3.1. Temperatures and excitation energies 

In 1964 Lang developed a statistical analysis of the properties of the cascade of neutrons 
emitted by fission fragments. We are interested in the relation between the average value 
of the kinetic energy of these neutrons cf, and the fragment temperatures. Denoting by 
ti the nuclear temperature at excitation U i - i B n i ,  when U ,  is the initial nuclear excitation 
energy and Bni is the binding energy of the first emitted neutron, we have 

g . = a t  ni 4 i .  (45) 

Taking into account equation (28), the average initial temperature of the fragment 
is approximately given by 

7 indicates the temperature corresponding to average V i .  This formula can be applied 
when the average number of neutrons emitted by the considered fragment is more than 
one. In those cases where level density behaviour is not represented by equation (26), but 
approaches the constant temperature formula, the average kinetic energy of the neutrons 
has a value very close to  2T,, T, being the constant or approximately constant temperature 
of the nuclear cascade in a given energy region. 

The values of U i  are usually obtained from the values of q i  and of energy E,i emitted 
as y rays 

(47) 

In analysis of fission processes for which the energy E,i is not given as the result of 
experiments. one can approximately assume that 

- 
U ,  = i j i (En i+8"i )+Ey i .  

E,i = 0*75ij+2. (48) 
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For the purpose of the present analysis, equations (47) and (48) can be considered 
satisfactory; in fact, the values of EYi prove to be slightly higher than the values *B,, 
because of competition between y rays and neutrons at the end of the neutron cascade 
due to the high value of the fragment spin (Nifenecker et a1 1972). 

The B,, values were taken from the tables of Wing and Varley (1964) averaging for 
each fragment pair A , ,  A ,  out of different Z , ,  Z, proton numbers. Bni indicates the 
weighted average value of Bni over the cascade neutrons. 

3.2. "'Cf spontaneous fission 

The values of U ,  were calculated from equation (47) taking the 8, values from Bowman 
et a1 (1963), the iji values given recently by Signarbieux et a1 (1972) and the E.,i values as 
given by Nifenecker et al(l972).  The values of obtained from equation (46) are given 
in figure 1. Two interesting points can be brought out;  the initial temperatures of 
the fragments are almost equal for the two complementary fragments of any given pair 
and they are also almost constant throughout the mass spectrum, except in the symmetric 
mass region, where they show an increase. It must be pointed out, however, that the 

values in this region, as given by the equation (46), will turn out to be overestimated. 

I I I I I 1 1 1 
O' 73 89 105 I21 137 I53 I69 

A 

Figure 1. Average initial temperatures of the fragments in 252Cf spontaneous fission. The 
temperatures refer to the beginning of the neutron cascade and correspond to the tempera- 
tures of the nascent fragments at scission point. Errors in temperatures are not given: they 
are of the order of & 5 % and due to errors of 8" and to some uncertainty in application of 
equation (26) for the level density; in the magic nuclei region around Z IV 50, A 2 132, the 
correction will reduce the given values to a factor ranging from 1 to 0.6. 

When the uncertain values in the symmetric mass region are not considered, we 
obtain the value ( T )  = 1.12 MeV, as the average value for all fragment pairs. This 
value approximately corresponds to the equilibrium temperature t o .  

In the case of 252Cf spontaneous fission it is possible to make direct verification of 
equation (44) which predicts equality of the average initial temperature of fragments for 
fixed values of the total kinetic energy gk. In fact, figure 15 of Bowman et a1 (1963) 
shows the approximate equality of the average kinetic energies 8, of the cascade neutrons 
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I 2  

1 1 . -  

10- 

h 

> 

v 

d 

at given values of total kinetic energy for most fragment pairs : it should be recalled that 
the temperature values are nearly proportional to 8" (see relation (46)). 

We now calculate the values of oJk as given by equation (42). The U' values can be 
calculated with equations (41) and (47) or, otherwise, by considering the energy balance 
equation 

- 
- 

9- 

8-  

7 -  

where 8 k  indicates the average value of $ .  
The values of Q, have been taken from the tables of Wing and Varley (1964), averaging 

for each fragment pair A , ,  A ,  out of different proton numbers Z , ,  Z,. In the case of 
252Cf spontaneous fission very accurate values of 8 k  (Signarbieux et al 1973, private 
communication) are available, so that we prefer to use equation (49). The value t o  
has been assumed as t o  = 1.12 MeV. 

The calculated values of oJk are given in figure 2 together with the experimental ones. 
The experimental values come from recent results of the Saclay group (Signarbieux 
er a1 1973, private communication). 

252Cf  

. 
a 

0 .  
0 0 0  *. * *  * * * *  0 0  

* e  
o o o o o d o o  0 u 0 * d * o ~ * 8 *  o o o o o o  0 . .  o o o o o o o o o o o o  . 

I . T 
I 

89 97 105 I I3 I21 
A 

9 

Figure 2. Calculated (0) and experimental (0) values of udk. Errors in calculated values are 
estimated of the order of a few per cent. Errors in experimental values are of the order of 
0 .0542  MeV (Signarbieux et al 1973). In the symmetric mass region the calculated values 
uJk are underestimated because of shell effects. 

The agreement between the two sets of values is quite good, except in the symmetric 
fission region. The discrepancy in the symmetric mass region can be explained by taking 
into account that dD/dT is larger than the value given by (28) for nuclei around the 
magic region. 

In the framework of this simple approach to the problem, experiments and model 
predictions agree fairly well. 
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1.2- 

0.8 

0.4 

ZI 
I -  

lk. 

- 

3.3. Thermal neutron induced j ss ion of 2 3 s  U 

The 8, values were taken from the measurements of Milton and Fraser (1965); it should 
be recalled that there is considerable uncertainty in these values and that for many 
fragments the P values are smaller than one, thus preventing application of equation (45). 
Many experiments have given P values; we have averaged out the values obtained by 
many researchers (Milton and Fraser 1965, Apalin er a1 1964, 1965, M a s h  er a1 1967). 

values are not considered for fragments where the P values are too low. 
By using equations (46) and (47) we obtain the values given in figure 2. The 

*.. 0 
0 - .  0 .  0 - -  - 

0 .  
' * * . . o O  

- 

- 

I 1 I I I I I I 1 I I 

, ' O I  1.6 c 
235 

U i n  
0 

The 'ij values are approximately constant for all fragments considered. It is interesting 
to note that the average ('ij) value for the given fragments turns out to be 1.095 MeV 
which is approximately the same value as that obtained for 2s2Cf spontaneous fission. 

This is a very interesting point : the viscous motion produces nearly the same tempera- 
tures in the two nuclear processes under consideration. A consequence of temperature 
equality and constancy is the fact that the excitation energy and consequently the values 
of emitted neutron number of a given fragment remain almost the same even when 
different parent nuclei are considered. This rule (ie, the approximate equality of P 
values for 2s2Cf spontaneous fission and for 23sU fission induced by thermal neutrons) 
was first established by Terre11 (1962). 

For the calculation of the values  oft^^^ we have used equations (42) and (49). The 
values of 6fk have been taken from Ribrag (1967) and the values of Q,, as in the case of 
252Cf fission, from the tables of Wing and Varley (1964). 

The calculated values C T ~ ~  are shown in table 1 together with the experimental results 
taken from the paper by Schmitt et a1 (1966). Agreement between the two sets of values 
is generally satisfactory. 

Since in the region where Z 2: 50, we are facing the same problem as in 252Cf fission, 
it is reasonable to assume that the discrepancies are due to the same effects. 
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Table 1. Calculated and experimental values of ugt for 23sU+ thermal neutron fission. 

81 7.4 6.9 
85 7.7 7.0 
89 7.5 7.2 
93 7.2 7.6 
97 7.1 8.7 

101 7.0 10.1 
105 7.0 10.6 

Errors in calculated ubk values are estimated of the order of a few per cent. The errors in 
experimental ugk values are discussed in the original paper by Schmitt et al(1966). The values 
in the symmetric mass region have been omitted either because of the large errors in the 
experimental data and because of the uncertainty of application of equation (42). 

3.4. 233U + 13-14 MeV protons 

We have examined the experimental results obtained by Bishop er a1 (1970) and by 
Burnett er a1 (1971). 

The values of C were given by both groups of researchers; but the values of Bishop 
er a1 fit the energy balance better. The values of &, the average kinetic energy of the 
cascade neutrons, were measured by Bishop et al(l970) ; these values correspond to the 
whole distribution of total kinetic energy. The values obtained are given in table 2. 
The given T values are almost constant for all the mass spectrum; in particular they 
are equal for the two fragments of a pair, as obtained in the statistical analysis. The 
average ( T )  value turns out to be about 1.2 MeV, which approximately represents the 
equilibrium temperature t o .  

Table 2. Experimental and calculated results for 233U+ 13-14 MeV proton induced fission. 

90 144 1.18 1.23 9.8 9.0 
95 139 1.22 1.26 9.7 10.0 

100 134 1.15 1.30 10.1 11.5 
105 129 1.15 1.26 10.0 12.3 
110 124 1.22 1.24 10.7 11.0 
116 1 I8 1.21 1.20 10.9 10.5 

Errors in 
due to errors in the experimental data. 
t Burnett er al(1971). 

and in uQL are not given; they can be estimated to be of the order of a few per cent 

The uJk values we obtained from equation (42) are reported in table 2 where the 

The values 0’ have been obtained by adding the values 0; and 0; obtained from 

There is reasonable agreement between the two sets of values (see equation (47)). 

experimental values (Burnett er al 1971) are also shown. 

the cascade properties. 
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Similar results can be obtained by considering the data on 238U + 11.5 MeV protons 
given by Bishop et al(l970) and the analogous fission reactions studied by Cheifetz and 
Fraenkel(l968). 

4. Conclusions 

The main conclusion obtained from this analysis is that the general properties of excita- 
tion energies of fission fragments are explained within the framework of a statistical 
model. The model does not predict the value of the statistical temperature, but this 
value can be obtained directly from experimental data. 

The widths of the spectra are well reproduced and correspond to the peculiar 
fluctuations of nuclear energies due to the small number of nucleons which play a role 
in the building up of the internal excitation of the fragments. 

The values of the fragment energy distribution variances are approximately repro- 
duced in all the fission processes that are considered. 

Two remarks should be made : firstly, the results were obtained without introducing 
a particular deformation of the fragments at scission ; secondly, we considered the dif- 
ferent fragment pairs separately, so that the mass spectrum was not discussed. This 
point, however, will be clarified in a further analysis. 

The first point can be briefly discussed from the consideration that the deformation 
energy at the scission point is unimportant, it follows that the equilibrium temperatures 
have been evaluated by taking into account the whole excitation energies of the frag- 
ments. 

Under this hypothesis a nearly constant temperature has been obtained and the 
variances of excitation energy spectra are in agreement with experimental data. The 
peculiar behaviour of average excitation energies Vi plotted against A (the saw-tooth 
shape) are a consequence of the critical dependence of the level density parameters, 
the g for instance, on different nuclei and in particular on closed shell nuclei and their 
neighbours. 

It is known that a different viewpoint was expressed in the past (Vandenbosch 
1962) : the assumption was made that a good deal of the final fragment excitation comes 
out of the deformation energy at scission, weakly coupled with the internal excitation. 

We should emphasize that the fragments at the scission point cannot be considered 
as exactly isolated nuclei with their given level densities and ground state energies. 

Interaction between the fragments which is active just until scission and the equili- 
brium condition between the various fragment pairs will cause a perturbation of the 
level densities, at least at the Fermi top. 

We must say, however, that, when a large deformation energy is introduced at scis- 
sion, the results presented in this paper will be deeply modified and may lose their 
significance. 

The agreement between experimental results and statistical analysis indicates, in 
principle, that deformation is not very important, but in the symmetric mass region the 
results are confused and different possibilities are open. 

One should note, finally, that the deformation energy exceeding the ground state 
energy, when stored in the nuclei, can be statistically unfavoured in spite of the excitation 
energy, which corresponds to many more degrees of freedom of the nuclear system. 

The predictions given by the deformation model are not definitely proved. The 
saw-tooth behaviour of v i  is reproduced by assuming a critical deformability of the 
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nuclei which is somehow related to  the level density properties ; the model does not give 
a precise interpretation of variance 0;. 
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